Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 14(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38612370

RESUMO

This comprehensive study on the Andalusian Black cattle breed reveals a substantial population decline, with the average herd size decreasing significantly from 305.54 to 88.28 animals per herd. This decline is primarily attributed to agricultural changes and the introduction of foreign meat-focused breeds. The male-to-female ratio shift is noteworthy, with more cows than bulls, impacting selection intensity for both genders. Inbreeding levels, though relatively low historically (5.94%) and currently (7.23%), raise concerns as 37.08% historically and 48.82% currently of the animals exhibit inbreeding. Positive assortative mating is evident, reflected by the increasing non-random mating coefficient (α). Key ancestors play a crucial role in shaping genetic diversity, with one ancestor significantly influencing the current genetic pool and the top 10 ancestors contributing substantially. Breed maintains a conservation index of 2.75, indicating relatively high genetic diversity. Recent conservation efforts have led to an increase in registered animals. The Cañadas Reales, historical transhumance routes, may have contributed to genetic connections among provinces. Challenges include the historical bottleneck, demographic changes, and potential impacts from reproductive practices. The Andalusian Black breed's conservation necessitates ongoing efforts in genealogical registration, targeted breeding programs, and collaborative initiatives to address the observed demographic shifts and ensure sustainable genetic diversity.

2.
Animals (Basel) ; 14(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38473046

RESUMO

The historical increase in the occurrence of extreme weather events in Spain during the last thirty years makes it a perfect location for the evaluation of climate change. Modeling the effects of climate change on domestic animals' genetic diversity may help to anticipate challenging situations. However, animal populations' short life cycle and patent lack of historical information during extended periods of time drastically compromise the evaluation of climate change effects. Locally adapted breeds' gene pool is the base for their improved resilience and plasticity in response to climate change's extreme climatic conditions. The preservation of these domestic resources offers selection alternatives to breeders who seek such improved adaptability. The Spanish endangered autochthonous Hispano-Arabian horse breed is perfectly adapted to the conditions of the territory where it was created, developed, and widespread worldwide. The possibility to trace genetic diversity in the Hispano-Arabian breed back around seven decades and its global ubiquity make this breed an idoneous reference subject to act as a model for other international populations. Climate change's shaping effects on the genetic diversity of the Hispano-Arabian horse breed's historical population were monitored from 1950 to 2019 and evaluated. Wind speed, gust speed, or barometric pressure have greater repercussions than extreme temperatures on genetic diversity. Extreme climate conditions, rather than average modifications of climate, may push breeders/owners to implement effective strategies in the short to medium term, but the effect will be plausible in the long term due to breed sustainability and enhanced capacity of response to extreme climate events. When extreme climatic conditions occur, breeders opt for mating highly diverse unrelated individuals, avoiding the production of a large number of offspring. People in charge of domestic population conservation act as catalyzers of the regulatory changes occurring during breeds' climate change adaptive process and may identify genes conferring their animals with greater adaptability but still maintaining enhanced performance. This model assists in determining how owners of endangered domestic populations should plan their breeding strategies, seeking the obtention of animals more resilient and adapted to climate-extreme conditions. This efficient alternative is focused on the obtention of increased profitability from this population and in turn ensuring their sustainability.

3.
Front Vet Sci ; 10: 1297412, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38173554

RESUMO

Despite the relatively wide knowledge of camel biomechanics, research into the immediate functional response that accompanies the execution of physical exercise remains unapproached. Therefore, selective breeding programs lack an empirical basis to achieve genetic improvement of physical stress tolerance traits and monitor camel welfare in this regard. Given the fact that physical exercise increases net heat production, infrared thermography (IRT) was selected to study the temperature changes at the skin surface of the different body areas in clinically normal dromedary camels, mostly relegated to leisure activities. Specifically, a lower dispersion at the individual level of the surface temperature at the scapular cartilage region, shoulder joint, and pelvis region, as well as lower values for Tmax and Tmin at the region of the ocular region, pectoral muscles, semimembranosus-semitendinosus muscles, and hind fetlock after exercise, have to be considered as breeding criteria for candidate selection. Such thermophysiological responses can be used as indirect measures of tissue activity in response to exercise and hence are reliable indicators of animal tolerance to physical exercise-induced stress. Additionally, sex, castration, age, and iris pigmentation significantly impacted the thermo-physiological response to exercise in the study sample, which can be attributed to hormones, general vigor, and visual acuity-mediated effects. These specific factors' influence has to be considered for the evaluation of physical performance and the design of selection schemes for physical-related traits in dromedaries.

4.
Front Vet Sci ; 10: 1297430, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38292133

RESUMO

To date, the biomechanical dynamics in camelids have not been addressed, although it might be a factor that can affect selection and breeding in this species. Therefore, the aim of this article is to conduct curve fitting and discriminant canonical analysis to identify the mathematical function that best captures the dynamics of camel locomotion and to study the impact of kinematic, morphometric, physiological, and phaneroptic variables on gait performance in leisure riding and racing activities in dromedaries, respectively. The cubic function emerged as the most suitable mathematical model to represent the locomotive behavior of camels. Various factors were found to play a pivotal role in the athletic performance of leisure riding and racing dromedary camels. Concretely, angular measurements at the distal fore and rear extremity areas, pelvis inclination, relative volume of the hump, impact forces of the front limbs, post-neutering effects, and the kinematic behavior of the scapula, shoulder, carpus, hip, and foot are the factors that greatly impact gait performance in leisure riding and racing camels. The biomechanical performance at these specific body regions has a profound impact on weight absorption and minimization of mechanic impact during camel locomotion, static/dynamic balance, force distribution, energy of propulsion, movement direction and amplitude, and storage of elastic strain in leisure riding and racing dromedaries. In contrast, other animal- and environment-dependent factors do not exert significant influence on camel gait performance, which can be attributed to species-specific, inherited adaptations developed in response to desert conditions, including the pacing gait, broad foot pads, and energy-efficient movements. The outcomes of our functional data analysis can provide valuable insights for making informed breeding decisions aimed at enhancing animal functional performance in camel riding and racing activities. Furthermore, these findings can open avenues for exploring alternative applications, such as camel-assisted therapy.

5.
Animals (Basel) ; 12(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35454235

RESUMO

Despite their pivotal position as relevant sources for high-quality proteins in particularly hard environmental contexts, the domestic goat has not benefited from the advances made in genomics compared to other livestock species. Genetic analysis based on the study of candidate genes is considered an appropriate approach to elucidate the physiological mechanisms involved in the regulation of the expression of functional traits. This is especially relevant when such functional traits are linked to economic interest. The knowledge of candidate genes, their location on the goat genetic map and the specific phenotypic outcomes that may arise due to the regulation of their expression act as a catalyzer for the efficiency and accuracy of goat-breeding policies, which in turn translates into a greater competitiveness and sustainable profit for goats worldwide. To this aim, this review presents a chronological comprehensive analysis of caprine genetics and genomics through the evaluation of the available literature regarding the main candidate genes involved in meat and milk production and quality in the domestic goat. Additionally, this review aims to serve as a guide for future research, given that the assessment, determination and characterization of the genes associated with desirable phenotypes may provide information that may, in turn, enhance the implementation of goat-breeding programs in future and ensure their sustainability.

6.
Vet Sci ; 9(2)2022 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35202321

RESUMO

Genetic diversity and demographic parameters were computed to evaluate the historic effects of coat colour segregation in the process of configuration of the Hispano-Arabian horse (Há). Pedigree records from 207,100 individuals born between 1884 and 2019 were used. Although coat colour is not a determinant for the admission of Hispano-Arabian individuals as apt for breeding, it may provide a representative visual insight into the gene contribution of Spanish Purebred horses (PRE), given many of the dilution genes described in Há are not present in the Arabian Purebred breed (PRá). The lack of consideration of coat colour inheritance patterns by the entities in charge of individual registration and the dodging behaviour of breeders towards the historic banning policies, may have acted as a buffer for diversity loss (lower than 8%). Inbreeding levels ranged from 1.81% in smokey cream horses to 8.80 for white horses. Contextually, crossbred breeding may increase the likelihood for double dilute combinations to occur as denoted by the increased number of Há horses displaying Pearl coats (53 Há against 3 PRE and 0 PRá). Bans against certain coat colours and patterns may have prevented an appropriate registration of genealogical information from the 4th generation onwards for decades. This may have brought about the elongation of generation intervals. Breeder tastes may have returned to the formerly officially-recognised coat colours (Grey and Bay) and Chestnut/Sorrel. However, coat colour conditioning effects must be evaluated timely for relatively short specific periods, as these may describe cyclic patterns already described in owners' and breeders' tastes over the centuries.

7.
Animals (Basel) ; 11(2)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494478

RESUMO

Genetic diversity and population structure were analyzed using the historical and current pedigree information of the Arabian (PRá), Spanish Purebred (PRE), and Hispano-Arabian (Há) horse breeds. Genetic diversity parameters were computed and a canonical discriminant analysis was used to determine the contributions of ancestor breeds to the genetic diversity of the Há horse. Pedigree records were available for 207,100 animals born between 1884 and 2019. Nei's distances and the equivalent subpopulations number indicated the existence of a highly structured, integrated population for the Há breed, which is more closely genetically related to PRá than PRE horses. An increase in the length of the generation interval might be an effective solution to reduce the increase in inbreeding found in the studied breeds (8.44%, 8.50%, and 2.89%, for PRá, PRE, and Há, respectively). Wright's fixation statistics indicated slight interherd inbreeding. Pedigree completeness suggested genetic parameters were highly reliable. High GCI levels found for number of founders and non-founders and their relationship to the evolution of inbreeding permit controlling potential deleterious negative effects from excessively frequent mating between interrelated individuals. For instance, the use of individuals presenting high GCI may balance founders' gene contributions and consequently preserve genetic diversity levels (current genetic diversity loss in PRá, PRE, and Há is 6%, 7%, and 4%, respectively).

8.
Animals (Basel) ; 12(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35011157

RESUMO

The individuals engaged in predation interactions modify their adaptation strategies to improve their efficiency to reach success in the fight for survival. This success is linked to either capturing prey (predator) or escaping (prey). Based on the graphic material available on digital platforms both of public and private access, this research aimed to evaluate the influence of those animal- and environment-dependent factors affecting the probability of successful escape of prey species in case of attack by big cats. Bayesian predictive analysis was performed to evaluate the outcomes derived from such factor combinations on the probability of successful escape. Predator species, age, status at the end of the hunting act, time lapse between first attention towards potential prey and first physical contact, prey species and the relief of the terrain, significantly conditioned (p < 0.05) escape success. Social cooperation in hunting may be more important in certain settings and for certain prey species than others. The most parsimonious model explained 36.5% of the variability in escaping success. These results can be useful to design translatable selective strategies not only seeking to boost predation abilities of domestic felids for pest control, but also, biological antipredator defence in potential domestic prey of big cats.

9.
Res Vet Sci ; 132: 207-216, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32604044

RESUMO

New World's hair sheep breeds may genetically stem from West African introgression into established ecotypes of Spanish descent presumably extinct in the XIX Century. However, present Canary non-wooled breeds have presumably regressively resulted from the absorption of primitive individuals through Venezuelan descendants. We studied genetic diversity, structure, and evolution of the Canary hair sheep since its reintroduction in the 1950s. Demographic and genetic variability were evaluated using ENDOG (v4.8). Effective population size based on individual inbreeding rate was around one third higher than when based on individual coancestry rate. Nei's distances and equivalent subpopulations number indicated a highly-structured population. Although genetic diversity loss since the founder generations could be considered small, narrower pedigree bottlenecks could result from intraflock breeding policies and excessive contribution of few ancestors. Long generation intervals could be considered when reducing inbreeding. Wright's fixation statistics indicated slight interflock inbreeding. Pedigree completeness suggested genetic parameters were reliable, hence controlling inbreeding negative effects, could indeed, be crucial preserving these animal resources, consolidating the population in the archipelago after reintroduction.


Assuntos
Evolução Molecular , Variação Genética , Endogamia , Carneiro Doméstico/genética , Animais , Extinção Biológica , Feminino , Masculino , Densidade Demográfica , Espanha
10.
Res Vet Sci ; 131: 117-130, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32334156

RESUMO

First references of the endangered autochthonous Majorcan Ca Mè dog date from the 13th century and enhance its skills and adaptability to the orography. Genealogical historical records were traced back to founders. Founder number in the reference population (397), maximum generations traced, and average number of complete generations were 32, 5, and 2.75, respectively. Structure assessment revealed the existence of subpopulations regarding criteria such as owners (402), breeders (55), coat colours (liver, lemon, black and orange) and spotting patterns (piebald, roan, solid colour, tie or star presence). Average inbreeding (F) within colour groups ranged from 6.3-10.4%, for orange and black populations, respectively. F ranged from 9.43-12.22% for roan patterns and star presence, respectively. Tan point markings showed an F coefficient of 5.85%. The study of genetic diversity revealed a slightly different genetic background between subpopulations. Average coancestry between and within coat colours suggested orange and roan traits could be ascribed to the original nuclei, without omitting the high relationships among other subpopulations. Breeding strategy should select breeding pairs holding a relatedness coefficient below 15%. Hence, coat patterns in dog breeds can help preserving the genetic diversity in endangered dogs, even when these are geographically isolated.


Assuntos
Cruzamento , Cães/genética , Variação Genética , Pigmentação/genética , Animais , Cruzamento/métodos , Cães/anatomia & histologia , Patrimônio Genético , Endogamia , Linhagem , Fenótipo
11.
Animals (Basel) ; 9(12)2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31861237

RESUMO

Sex determination is key to designing endangered poultry population conservation and breeding programs when sex distribution departs from Hardy-Weinberg equilibrium. A total of 112 Utrerana chickens (28 per variety, partridge, black, white, and franciscan) were selected for hatching day sexing. Sex assignation was performed through 10 methods. Three sex assignment criteria comprised criteria found in literature, opposite criteria to that in the literature, and composite criteria combining methods reporting the highest predictive success from the previous ones. This study aims to determine which method combinations may more successfully determine sex across the four varieties of Utrerana endangered hen breed to tailor noninvasive early specific models to determine sex in local chicken populations. Although the explanatory power of the three assignation criteria is equal (75%), assignation criteria 2 resulted to be the most efficient as it correctly assigns males more frequently. Only methods 3 (English method), 5 (general down feathers coloration), 7 (wing fan), and 10 (behavior/coping styles) reported significant differences regardless of the variety, hence, are appropriate for early sexing. Sex confirmation was performed at 1.5 months old. Identifying sex proportions enhances genetic management tasks in endangered populations, complementing more standardized techniques, which may result inefficient given the implicit diversity found in local populations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA